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A B S T R A C T   

With the rapid development of the information technology (IT), heat transport and work cost in the information 
processing system gain significant scientific interest, but their synchronization problem has not been investigated 
hitherto. By the virtue of the finite-time Landauer principle, we here study the scenarios wherein one- 
dimensional Fourier heat transport synchronizes with the work cost of non-quasistatic information erasure. It 
is demonstrated that in such scenarios, the steady-state temperature distribution and harmonic temperature wave 
will respectively impose certain speed limits to information erasure, which give upper bounds on the amount of 
bits erased per unit time. The underlying physics of these speed limits are respectively the local well-definedness 
of the absolute temperature and the unsteadiness of the harmonic temperature wave. In engineering, the speed 
limit imposed by the steady-state temperature distribution can be understood as a performance limitation 
concomitant with the temperature stabilization, which quantitatively reveals the cost of the temperature 
stabilization.   

1. Introduction 

Over the past decades, the self-heating problem of the information 
processing system is increasingly severe and has already hindered the 
continued development of the information technology (IT) [1–3]. Ana-
lyses and resolutions of this problem therefore attract intensive attention 
in different research fields. On the one hand, in the field of heat trans-
port, great efforts are denoted to modeling heat transport from the 
nanoscale to the macroscale [4–6], seeking the thermal interface ma-
terial with high thermal conductivity and low elastic modulus [7–9], 
optimizing the heat transfer processes [10–15], and so on. 

On the other hand, in the field of information thermodynamics, self- 
heating in the information processing system is attributed to the work 
cost of information erasure (bit reset) [16–24], and the present research 
focus is to estimate such work cost. The most fundamental estimation is 
the Landauer principle [17], which states that the minimal work cost of 
erasing one bit of information equals kBTln2. Here, kB is the Boltzmann 
constant, and T denotes the absolute temperature of the position 
wherein information erasure takes place. This minimal work cost is 
usually termed as the Landauer bound or Landauer limit. The Landauer 
bound can be attained only for quasistatic information erasure, but the 
IT nowadays calls for information erasure at high speeds. Such 

inconsistency motivates researchers to explore the finite-time effect on 
the work cost of information erasure, and the so-called finite-time 
Landauer principle [25–28] is subsequently presented, namely, 

W = (kBln2+ σ)T ≥ (kBln2+ σ0)T, (1)  

where W is the work cost of erasing one bit of information, σ is the 
averaged entropy generation due to the finite-time protocol, and σ0 is a 
positive constant determined by the protocol duration and the dynamic 
parameters of the system. In general, σ0 depends on the accuracy of 
information erasure [29,30] and decays with the increasing protocol 
duration [28,31]. For the small protocol duration, the decay is typically 
dominated by the exponential scaling, while for the large protocol 
duration, the inversely linear scaling dominates [31]. Moreover, a recent 
experimental study has demonstrated that the work distributions obey 
the trajectory-class fluctuation theorems [32]. 

The work cost of information erasure poses self-heating, and heat 
transport arises from self-heating. This means that heat transport in the 
information processing system is essentially induced by the work cost of 
information erasure. Meanwhile, the finite-time Landauer principle il-
lustrates that the temperature plays an important role in the work cost of 
information erasure, whose spatial distribution and temporal evolution 
will be strongly influenced by the heat transport process. Thus, heat 
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transport will in turn influence the work cost of information erasure. 
These facts imply that there can be a certain synchronization between 
heat transport and the work cost in the information processing system. 
However, such synchronization have not been discussed hitherto, and 
we here in the information processing system which satisfies the 
following assumptions. The first assumption is that in the system, the 
work cost of non-quasistatic information erasure coexists with one- 
dimensional heat conduction posed on the space domain [0, L]. The 
physical meaning of such space domain is that the information pro-
cessing system is considered as a sheet, and heat conduction takes place 
only in the direction of its thickness. Second, the absolute temperature 
can be locally defined in the sense of local equilibrium, and based on 
such locally defined temperature, heat conduction can be modeled in 
terms of classical Fourier’s law 

q = − κ
∂T
∂x

, (2)  

where q = q(x, t) is the heat flux, and κ is the thermal conductivity. As 
the most commonly used model of heat conduction, Fourier’s law is 
generally valid for the macroscale heat conduction process [6]. More 
precisely, the validity of Fourier’s law requires that the characteristic 
size and time of the heat conduction process are much larger than the 
mean free path and relaxation time of the heat carriers respectively. This 
requirement is a microscopic description of the second assumption. 
Third, the work cost per bit erased attains the lower bound in the 
finite-time Landauer principle, and mathematically, this assumption can 
be written as 

Φ = (kBln2+ σ0)vbitT. (3)  

Here, Φ = Φ(x, t) is the power consumption per unit volume, vbit =

vbit(x, t) is the amount of bits that is erased per unit time per unit volume, 
which can be viewed as the local rate of information erasure. The fourth 
assumption is that the time needed by converting work into heat is 
negligibly small. This assumption allows us to equate the power con-
sumption per unit volume and the intensity of the internal heat source, 
leading to 

c
∂T
∂t

= −
∂q
∂x

+ (kBln2+ σ0)vbitT, (4)  

with c the specific heat per unit volume. Through combining Eqs. (2) and 
(4), we arrive at the governing equation with respect to the locally 
defined absolute temperature, namely, 

∂T
∂t

= D∇2T +
(kBln2 + σ0)vbit

c
T, (5)  

with D = κ /c the thermal diffusivity. Finally, vbit is assumed as a positive 
constant for the sake of simplification, so the intensity of the internal 
heat source is proportional to the locally defined absolute temperature. 

Based on the aforementioned assumptions, we first concern the 
synchronization problem between the work cost of information erasure 
and steady-state heat transport, and demonstrate that for such syn-
chronization, the temperature distribution will impose a speed limit to 
information erasure. Moreover, the speed limit is discussed from the 
viewpoints of physics and engineering. Then, we investigate the syn-
chronization problem between the work cost of information erasure and 
wave-like heat transport, including the spatially attenuated and 
temporally periodic (SATP) and temporally attenuated and spatially 
periodic (TASP) forms [33–35]. It is shown that such synchronization 
must be paired with another speed limit to information erasure, whose 
underlying physics is compared with that of the previous speed limit. 

2. Speed limit imposed by steady-state temperature distribution 

2.1. Mathematical derivation 

We first consider the case wherein the work cost of information 
erasure synchronizes with steady-state heat transport, and in this case, 
Eq. (5) reduces to 

κ∇2T + (kBln2+ σ0)vbitT = 0, (6)  

whose general solution is 

T = C1sin

[

x
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(σ0 + kBln2)vbit

κ

√ ]

+ C2cos

[

x
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(σ0 + kBln2)vbit

κ

√ ]

. (7) 

In Eq. (7), the coefficients C1 and C2 are determined by the boundary 
condition, and we here concern two types of the boundary conditions. 
The first type is the Dirichlet boundary condition 

T(x= 0)= T0, T(x= L)=TL, (8a)  

where T0 and TL are constants. According to the third law of thermo-
dynamics, T0 and TL must be strictly positive. The second type is the 
Neumann boundary condition 
(

κ
∂T
∂x

)⃒
⃒
⃒
⃒

x=0
= q0,

(

− κ
∂T
∂x

)⃒
⃒
⃒
⃒

x=L
= qL, (8b)  

where q0 and qL are constants. In practical engineering, the boundary 
heat flux is generally for the purpose of cooling rather than heating the 
system. In the light of this, q0 and qL are restricted to non-negative 
numbers. 

Substituting Eq. (8a) into Eq. (6) yields 
{

C2 = T0
C1sinα + C2cosα = TL

, (9)  

with α =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(σ0+kB ln2)vbit L2

κ

√

. For an arbitrary positive integer n, C1 is 
mathematically arbitrary as long as the local rate of information erasure 
satisfies 

vbit =
n2π2κ

(kBln2 + σ0)L2. (10a)  

Meanwhile, C2 does not exist unless T0cosα = TL. Such C1 and C2 will 
give rise to a non-unique or non-existent temperature distribution, 
which is physically meaningless. Thus, the local rate of information 
erasure must be constrained as 

vbit ∕=
n2π2κ

(kBln2 + σ0)L2, ∀n ∈ N+. (10b) 

Inequality (10b) can be regarded as the existence and uniqueness 
condition of the steady-state temperature distribution. 

With inequality (10b) satisfied, the solution of Eq. (9) is 

C1 =TLcscα − T0cotα, C2 =T0, (11)  

and the corresponding temperature distribution reads 

T = TLcscαsin
(αx

L

)
+ T0

[
cos

(αx
L

)
− cotαsin

(αx
L

)]

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
T2

L + T2
0

)
csc2α − 2T0TLcscαcotα

√

sin
[

αx
L

+ arccot
(

TLcscα
T0

− cotα
)]

.

(12) 

Besides the uniqueness and existence, a physically meaningful tem-
perature distribution must obey the third law of thermodynamics as 
well. The mathematical statement of obeying the third law of thermo-
dynamics is written as 
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T =T(x)> 0, ∀x ∈ [0, L]. (13) 

For the temperature distribution given by Eq. (12), inequality (13) is 
equivalent to 

f1(x)= sin
[

αx
L
+ arccot

(
TLcscα

T0
− cotα

)]

> 0, ∀x ∈ [0,L]. (14) 

As a sinusoidal function, f1(x) will have at least one zero point when 
the angular variation on [0, L] is equal to or larger than π. As a conse-
quence, inequality (14) has the following necessary condition 

α < αi=1 = π. (15) 

Indeed, inequality (15) is not only the necessary condition but also 
the sufficient condition for inequality (14), whose proof is as follows. In 
the presence of inequality (15), f1(x) is monotonic if the boundary 
temperatures satisfy 

max{TLcosα,T0cosα} ≥ min{TL,T0}. (16) 

Owing to the monotonicity, the minimum of f1(x) appears at the 
boundary, so the sufficient condition for inequality (14) is composed of 

f1(x= 0) =
T0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
T2

L + T2
0

)
csc2α − 2T0TLcscαcotα

√ > 0, (17a)  

and 

f1(x= L) =
TL

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
T2

L + T2
0

)
csc2α − 2T0TLcscαcotα

√ > 0. (17b) 

Because both of T0 and TL are strictly positive, inequalities 17a) and 
(17b) hold automatically. Accordingly, inequality ((15) is the sufficient 
condition for inequality (14) when the boundary temperature satisfy 
inequality (16). The other case is 

max{TLcosα,T0cosα}〈min{TL, T0}, (18)  

and in this case, f1(x) first increases and then decreases. Consequently, 
the minimum of f1(x) still equals f1(x= 0) or f1(x = L), and inequality 
(15) remains the sufficient condition for inequality (14). Inequality (15) 
has now proved to be the necessary and sufficient condition for 
inequality (14). This means that under Dirichlet boundary condition, the 
steady-state temperature distribution obeys the third law of thermody-
namics if and only if inequality (15) is satisfied. 

To sum up, the steady-state temperature distribution will not be 
physically meaningful unless both of inequalities 10b) and ((15) are 
satisfied. Mathematically, this will enforce the intersection of in-
equalities 10b) and ((15), which is calculated as: 

vbit < vi=1 =
π2κ

(σ0 + kBln2)L2. (19) 

Furthermore, the spatial integration of vbit actually equals the 
amount of bits erased per unit time, namely, 

dIbit

dt
= vbitAL, (20)  

where Ibit is the amount of bits erased in the system, and A is the cross- 
sectional area. Then, inequality (19) can be reformulated as 

dIbit

dt
< Vi=1 =

π2κA
(kBln2 + σ0)L

. (21)  

dIbit
dt actually characterizes the speed of information erasure, so inequality 

(21) is a speed limit to information erasure. 
Under the Neumann boundary condition, C1 and C2 are governed by 

{
καC1 = q0L
κα(C2sinα − C1cosα) = qLL . (22)  

For this system of equations, arbitrary C2 and non-existent C1 will occur 
when the local rate of information erasure satisfies inequality (10a). 
Hence, inequality (10b) remains the uniqueness and existence condition 
of the steady-state temperature distribution. 

When inequality (10b) is satisfied, we can acquire 

C1 =
q0L
κα , C2 =

(q0cotα + qLcscα)L
κα (23)  

and 

T =
L
κα

{
qLcscαcos

(αx
L

)
+ q0

[
cos

(αx
L

)
cotα + sin

(αx
L

)]}

=
L

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(q2
L + q2

0)csc2α + 2q0qLcscαcotα
√

κα sin
[

αx
L

+ arccot
(

q0sinα
qL + q0cosα

)]

.

(24) 

Likewise, the steady-state temperature distribution corresponding to 
the Neumann boundary condition must obey the third law of thermo-
dynamics stated by inequality (13). For the temperature distribution 
given by Eq. (24), the necessary and sufficient condition for inequality 
(13) is composed of 
(
q2

L + q2
0

)
csc2α + 2q0qLcscαcotα > 0 ⇔ q2

L + q2
0 > 0, (25)  

and 

f2(x)= sin
[

αx
L
+ arccot

(
q0sinα

qL + q0cosα

)]

> 0, ∀x ∈ [0, L]. (26) 

Indeed, inequality (25) indicates that the temperature distribution 
cannot be steady-state when both surfaces of the system are adiabatic. 
This is physically reasonable because in the absence of boundary cool-
ing, the balance of the internal energy can never be maintained. Just like 
f1(x), f2(x) is a sinusoidal function whose angular variation on [0, L]
equals π, so inequality (15) is also the necessary condition for inequality 
(26). When it comes to the sufficient condition for inequality (26), there 
two cases. If neither surface of the system is adiabatic, f2(x) first in-
creases and then decreases. As a result, the sufficient condition for 
inequality (26) is given by 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f2(x = 0) =
qLcscα + q0cotα

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(q2
L + q2

0)csc2α + 2q0qLcscαcotα
√ > 0

f2(x = L) =
q0cscα + qLcotα

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(q2
L + q2

0)csc2α + 2q0qLcscαcotα
√ > 0

, (27) 

By combining inequality (15) and condition (27), the necessary and 
sufficient condition for inequality (26) can be obtained as 

α < αi=2 = arccos
(

− min
{

q0

qL
,
qL

q0

})

. (28)  

If the system has only one adiabatic surface, f2(x) is monotonic and its 
minimum will appear at the boundary. In this case, the sufficient con-
dition for inequality (26) is still inequality (27), but the combination 
(15) and (27) will lead to a different result from inequality (28), namely, 

α < αi=3 =
π
2
. (29) 

We recall that inequality (25) excludes the case wherein both sur-
faces are adiabatic. Based on inequalities (25), 28) and ((29), the 
necessary and sufficient condition for inequality (13) can be summa-
rized as follows, 
{

α < αi=k+2
k < 2 , (30)  

where k is the number of adiabatic surfaces. Under the Neumann 
boundary condition, the steady-state temperature distribution obeys the 
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third law of thermodynamics if and only if condition (30) is satisfied. 
Similarly, the steady-state temperature distribution is physically 

meaningful only when the intersection of inequalities 10b) and ((28) is 
satisfied, namely, 
⎧
⎪⎨

⎪⎩

vbit < vi=k+2 =
κα2

i=k+2

(kBln2 + σ0)L2

k < 2
. (31) 

As Eq. (20) remains unchanged, vbit < vi=k+2 is equivalent to 

dIbit

dt
< Vi=k+2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π2κA
4(kBln2 + σ0)L

, k = 0

κA
(kBln2 + σ0)L

[

arccos
(

− min
{

q0

qL
,
qL

q0

})]2

, k = 1

,

(32)  

which also gives an upper bound on the speed of information erasure. 

2.2. Discussion from viewpoints of physics and engineering 

Although the mathematical formulations of the speed limit will vary 
with the boundary condition, each formulation gives an upper bound on 
the speed of information erasure. The physical meaning of such speed 
limit is that the temperature distribution can be steady-state only when 
information erasure is sufficiently slow. Furthermore, the speed limit is 
derived from three mathematical properties of the temperature distri-
bution, including the existence, uniqueness and positivity (the third law 
of thermodynamics). All of these mathematical properties arise from a 
physical assumption that the absolute temperature is locally well- 
defined. Consequently, the underlying physics of the speed limit is the 
local well-definedness of the absolute temperature. The upper bounds in 
these speed limits depend on only not the boundary conditions but also 
the features of the system, i.e., σ0 and κ. That is because to maintain a 
steady-state temperature distribution, all heat generated by information 
erasure must be transferred to the environment. To this end, all heat 
generated by information erasure must first be able to arrive at the 
boundary of the system, and such ability relies on the features of the 
system including σ0 and κ. Then, all heat must be able to flow from the 
boundary to the environment, which relies on the boundary condition. 
Moreover, the upper bound Vi can be factorized as 

Vi =

(
A
L

)

× (Biκ) ×
(

1
kBln2 + σ0

)

,

Bi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

π2, i = 1
[

arccos
(

− min
{

q0

qL
,
qL

q0

})]2

, i = 2

π2/4, i = 3

.

(33) 

The first factor is nothing but a geometrical parameter of the system, 
which is always finite. The second factor is proportional to the thermal 
conductivity κ, a thermophysical property measuring the ability to 
conduct heat, and the proportionality coefficient Bi depends on the 
boundary condition of the heat conduction process. This factor can 
never reach infinity unless the thermal conductivity is infinitely large, 
which actually enforces thermodynamically reversible heat conduction. 
Specifically, for a given Vi=2, Bi=2 can also be viewed as a restriction on 
the Neumann boundary condition. The third factor can diverge to in-
finity as long as (kBln2+σ0) vanishes. Nevertheless, (kBln2+σ0) is the 
entropy generation by erasing one bit of information, so it must be 
strictly positive due to the thermodynamic irreversibility of information 
erasure. Taking all these into account, the finiteness of Vi has a ther-
modynamic meaning, namely that both of the heat conduction and in-
formation erasure processes are thermodynamically irreversible. 

We now discuss the speed limit from the viewpoint of engineering. In 

engineering, stabilizing the temperature distribution is a common de-
mand because the performance and reliability of the practical device are 
strongly influenced by the operating temperature. As demonstrated 
above, such temperature stabilization will inevitably impose the speed 
limit to information erasure, which can be understood as a concomitant 
performance limitation. The speed limit understood as the performance 
limitation quantitatively reveals the cost of the temperature stabiliza-
tion, and implies that the temperature stabilization can be optimized via 
increasing Vi. Such a optimization allows us to reduce the cost of the 
temperature stabilization, and can be realized by increasing κ, σ− 1

0 and 
Bi. Compared with increasing κ and σ− 1

0 , increasing Bi is more feasible 
because the choice of the boundary condition is independent of the 
system parameters. Mathematically, it can be proved that B1, B2 and B3 
fulfill the following inequality chain 

B1 = B2(q0 = qL)〉B2(q0 ∕= qL)〉B3. (34) 

According to this inequality chain, the Dirichlet boundary condition 
and the Neumann boundary condition with q0 = qL are the first-choice 
boundary conditions. This inequality chain also indicates that for the 
Neumann boundary condition, no adiabatic surface is always superior to 
one adiabatic surface. 

3. Speed limit imposed by harmonic temperature wave 

Indeed, the speed limit to information erasure can also emerge from 
the synchronization between the work cost and unsteady-state heat 
transport. In order to illustrate this, we consider the following harmonic 
temperature wave [33–35], 

Tj(x, t) = ϕ(x) + θj(x, t), θj (x, t) =
{ T∗exp(ikx − μx − iωt), j = 1

T∗exp(ikx − iωt − ξt), j = 2
,

(35)  

where ϕ(x), θj=1(x, t), θj=2(x, t), T∗, k, ω, μ, and ξ are, respectively, a 
positive solution of Eq. (6), the SATP form, the TASP form, the complex 
amplitude, the wavenumber, the angular frequency, the spatial attenu-
ation exponent, and the temporal attenuation exponent. In order to 
guarantee the validity of Fourier’s law, ω and ξ must be sufficiently 
small. Otherwise, the characteristic time of the heat conduction process 
may be comparable to or even smaller than the relaxation time of the 
heat carriers. Of course, this requirement may not hold in practical 
problems. As a result, the following discussion should be restricted to the 
temperature control problem wherein ω and ξ are enforced to be suffi-
ciently small. It should be noted that the harmonic temperature wave 
will vanish for steady-state θj(x,t). Therefore, the harmonic temperature 
wave with the SATP form exists only if ω > 0, and for the harmonic 
temperature wave with the TASP from, its existence needs ω2 + ξ2 > 0. 

Substituting Tj(x, t) into Eq. (5) yields 

0 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ2− k2 +
α2

L2 + i
(ω

D
− 2kμ

)
, j = 1

α2

L2 +
ξ
D
− k2 +

iω
D
, j = 2

, (36)  

which enforces 

0 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ2− k2 +
α2

L2 =
ω
D
− 2kμ, j = 1

α2

L2 +
ξ
D
− k2 =

ω
D
, j = 2

. (37) 

By the virtue of Eq. (37), ω, μ and ξ can be expressed in terms of k, 
namely, 

ω(k, j= 1) =
{

2Dk
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 − α2L− 2

√
, k > αL− 1

0, 0 < k ≤ αL− 1 , (38a) 
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μ(k, j= 1) =
{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2 − α2L− 2
√

, k > αL− 1

0, 0 < k ≤ αL− 1 , (38b)  

ω(k, j= 2)= 0, k> 0, (38c)  

ξ(k, j= 2) =
{

D
(
k2 − α2L− 2), k > αL− 1

0, 0 < k ≤ αL− 1 , (38d) 

By combining Eq. (38a–d) with ω > 0 and ω2 + ξ2 > 0, we can 
deduce k > αL− 1, which is equivalent to the following speed limit, 

dIbit

dt
< Vj =

κALk2

kBln2 + σ0
, (39)  

which also gives an upper bound on the speed of information erasure. 
For given σ0 and κ, Vj is identically larger than Vi as long as the wave-
number satisfies k > πL− 1. This implies that the temperature wave with 
a sufficiently large wavenumber always allows a higher performance 
than the steady-state temperature distribution. Therefore, replacing the 
temperature stabilization by maintaining such temperature wave may 
serve as a strategy in thermal management. 

Inequality (39) is actually entailed by unsteady-state θj(x, t), and its 
derivation does not involve the existence, uniqueness or positivity of the 
solution. Consequently, the underlying physics of this speed limit is the 
unsteadiness of the harmonic temperature wave rather than the local 
well-definedness of the absolute temperature, which differs from the 
speed limit imposed by the steady-state temperature distribution. Of 
course, Tj(x, t) must possess the uniqueness and existence, and obey the 
third law of thermodynamics likewise. The uniqueness and existence are 
guaranteed by Eqs. (38a–d). When it comes to the third law of ther-
modynamics, its mathematical statement becomes 

Tj(x, t) > 0, ∀(x, t) ∈ [0, L] × [0,+∞), (40)  

which requires 

min(x,t)∈[0,L]×[0,+∞)

{
Tj(x, t)

}
= minx∈[0,L]{ϕ(x)} − |T∗| > 0 ⇔ |T∗|

< minx∈[0,L]{ϕ(x)}. (41) 

As a consequence, the third law of thermodynamics will entail an 
upper bound on the complex amplitude rather than the speed of infor-
mation erasure. 

As shown in Ref. [33], the SATP and TASP forms of the hyperbolic 
non-Fourier temperature wave exhibit the anomalous dispersions, 
which are characterized by vg > vp. Here, vg and vp are respectively the 
group velocity and the phase velocity of the temperature wave. As a 
comparison, we here also discuss whether the temperature waves in this 
work exhibit the anomalous dispersions. For the SATP form, the group 
velocity and the phase velocity are respectively given by 

vg =
∂ω(k, j = 1)

∂k
=

2D
(
2k2 − α2L− 2

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 − α2L− 2

√ , k >αL− 1, (42a)  

vg =
∂ω(k, j = 1)

∂k
=

2D
(
2k2 − α2L− 2

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 − α2L− 2

√ , k >αL− 1, (42b)  

which satisfy 

vg = vp

(

1+
k2

k2 − α2L− 2

)〉

vp. (42c)  

Therefore, the SATP form also exhibits the anomalous dispersion, which 
is a similarity between the temperature wave discussed in this work and 
the hyperbolic non-Fourier temperature wave. For the TASP form, we 
have vg = vp = 0, so the TASP form does not exhibit the anomalous 
dispersion. This is a difference between the temperature wave discussed 
in this work and the hyperbolic non-Fourier temperature wave. 

4. Conclusions  

• When one-dimensional Fourier heat conduction synchronizes with 
the work cost of non-quasistatic information erasure, the steady-state 
temperature distribution will inevitably impose a speed limit to in-
formation erasure, which gives an upper bound on the amount of bits 
erased per unit time. and dependent of the boundary condition.  

• If the aforementioned speed limit is not satisfied, the steady-state 
temperature distribution will be physically meaningless due to the 
non-uniqueness, non-existence, or violation of the third law of 
thermodynamics. This means that the underlying physics of this 
speed limit is the local well-definedness of the absolute temperature. 
From the viewpoint of engineering, this speed limit can be under-
stood as a performance limitation concomitant with the temperature 
stabilization, which quantitatively reveals the cost of the tempera-
ture stabilization.  

• When one-dimensional Fourier heat conduction synchronizes with 
the work cost of non-quasistatic information erasure, the harmonic 
temperature wave, including the SATP and TASP forms, will impose 
another speed limit to information erasure, which also gives an upper 
bound on the amount of bits erased per unit time. The underlying 
physics of this speed limit is the unsteadiness of the harmonic tem-
perature wave rather than the local well-definedness of the absolute 
temperature. 
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